IXth Annual Harvard-MIT Mathematics Tournament
Saturday 25 February 2006

Individual Round: Geometry Test

1. Octagon $ABCDEFGH$ is equiangular. Given that $AB = 1$, $BC = 2$, $CD = 3$, $DE = 4$, and $EF = FG = 2$, compute the perimeter of the octagon.

2. Suppose ABC is a scalene right triangle, and P is the point on hypotenuse AC such that $\angle ABP = 45^\circ$. Given that $AP = 1$ and $CP = 2$, compute the area of ABC.

3. Let A, B, C, and D be points on a circle such that $AB = 11$ and $CD = 19$. Point P is on segment AB with $AP = 6$, and Q is on segment CD with $CQ = 7$. The line through P and Q intersects the circle at X and Y. If $PQ = 27$, find XY.

4. Let ABC be a triangle such that $AB = 2$, $CA = 3$, and $BC = 4$. A semicircle with its diameter on BC is tangent to AB and AC. Compute the area of the semicircle.

5. Triangle ABC has side lengths $AB = 2\sqrt{5}$, $BC = 1$, and $CA = 5$. Point D is on side AC such that $CD = 1$, and F is a point such that $BF = 2$ and $CF = 3$. Let E be the intersection of lines AB and DF. Find the area of $CDEB$.

6. A circle of radius t is tangent to the hypotenuse, the incircle, and one leg of an isosceles right triangle with inradius $r = 1 + \sin \frac{\pi}{8}$. Find rt.

7. Suppose $ABCD$ is an isosceles trapezoid in which $AB \parallel CD$. Two mutually externally tangent circles ω_1 and ω_2 are inscribed in $ABCD$ such that ω_1 is tangent to AB, BC, and CD while ω_2 is tangent to AB, DA, and CD. Given that $AB = 1$, $CD = 6$, compute the radius of either circle.

8. Triangle ABC has a right angle at B. Point D lies on side BC such that $3\angle BAD = \angle BAC$. Given $AC = 2$ and $CD = 1$, compute BD.

9. Four spheres, each of radius r, lie inside a regular tetrahedron with side length 1 such that each sphere is tangent to three faces of the tetrahedron and to the other three spheres. Find r.

10. Triangle ABC has side lengths $AB = 65$, $BC = 33$, and $AC = 56$. Find the radius of the circle tangent to sides AC and BC and to the circumcircle of triangle ABC.