1. Arpon chooses a positive real number \(k \). For each positive integer \(n \), he places a marker at the point \((n, nk)\) in the \((x, y)\) plane. Suppose that two markers whose \(x \) coordinates differ by 4 have distance 31. What is the distance between the markers at \((7k, 7k)\) and \((19k, 19k)\)?

2. The real numbers \(x, y, z \) satisfy \(0 \leq x \leq y \leq z \leq 4 \). If their squares form an arithmetic progression with common difference 2, determine the minimum possible value of \(|x - y| + |y - z|\).

3. Find the rightmost non-zero digit of the expansion of \((20)(13!)\).

4. Spencer is making burritos, each of which consists of one wrap and one filling. He has enough filling for up to four beef burritos and three chicken burritos. However, he only has five wraps for the burritos; in how many orders can he make exactly five burritos?

5. Rahul has ten cards face-down, which consist of five distinct pairs of matching cards. During each move of his game, Rahul chooses one card to turn face-up, looks at it, and then chooses another to turn face-up and looks at it. If the two face-up cards match, the game ends. If not, Rahul flips both cards face-down and keeps repeating this process. Initially, Rahul doesn’t know which cards are which. Assuming that he has perfect memory, find the smallest number of moves after which he can guarantee that the game has ended.

6. Let \(R \) be the region in the Cartesian plane of points \((x, y)\) satisfying \(x \geq 0, \ y \geq 0, \) and \(x + y + |x| + |y| \leq 5 \). Determine the area of \(R \).

7. Find the number of positive divisors \(d \) of \(15! = 15 \cdot 14 \cdot \cdots \cdot 2 \cdot 1 \) such that \(\gcd(d, 60) = 5 \).

8. In a game, there are three indistinguishable boxes; one box contains two red balls, one contains two blue balls, and the last contains one ball of each color. To play, Raj first predicts whether he will draw two balls of the same color or two of different colors. Then, he picks a box, draws a ball at random, looks at the color, and replaces the ball in the same box. Finally, he repeats this; however, the boxes are not shuffled between draws, so he can determine whether he wants to draw again from the same box. Raj wins if he predicts correctly; if he plays optimally, what is the probability that he will win?
9. [6] I have 8 unit cubes of different colors, which I want to glue together into a $2 \times 2 \times 2$ cube. How many distinct $2 \times 2 \times 2$ cubes can I make? Rotations of the same cube are not considered distinct, but reflections are.

10. [6] Wesyu is a farmer, and she’s building a cao (a relative of the cow) pasture. She starts with a triangle $A_0A_1A_2$ where angle A_0 is 90°, angle A_1 is 60°, and A_0A_1 is 1. She then extends the pasture. First, she extends A_2A_0 to A_3 such that $A_3A_0 = \frac{1}{2}A_2A_0$ and the new pasture is triangle $A_1A_2A_3$. Next, she extends A_3A_1 to A_4 such that $A_4A_1 = \frac{1}{3}A_3A_1$. She continues, each time extending A_nA_{n-2} to A_{n+1} such that $A_{n+1}A_{n-2} = \frac{1}{2^n}A_nA_{n-2}$. What is the smallest K such that her pasture never exceeds an area of K?

11. [6] Compute the prime factorization of 1007021035035021007001. (You should write your answer in the form $p_1^{e_1}p_2^{e_2}\ldots p_k^{e_k}$, where p_1, \ldots, p_k are distinct prime numbers and e_1, \ldots, e_k are positive integers.)

12. [6] For how many integers $1 \leq k \leq 2013$ does the decimal representation of k^k end with a 1?

13. [8] Find the smallest positive integer n such that $\frac{5^{n+1} + 2^{n+1}}{5^n + 2^n} > 4.99$.

14. [8] Consider triangle ABC with $\angle A = 2\angle B$. The angle bisectors from A and C intersect at D, and the angle bisector from C intersects AB at E. If $\frac{DE}{DC} = \frac{1}{3}$, compute $\frac{AB}{AC}$.

15. [8] Tim and Allen are playing a match of tenus. In a match of tenus, the two players play a series of games, each of which is won by one of the two players. The match ends when one player has won exactly two more games than the other player, at which point the player who has won more games wins the match. In odd-numbered games, Tim wins with probability $\frac{3}{4}$, and in the even-numbered games, Allen wins with probability $\frac{3}{4}$. What is the expected number of games in a match?

16. [8] The walls of a room are in the shape of a triangle ABC with $\angle ABC = 90^\circ$, $\angle BAC = 60^\circ$, and $AB = 6$. Chong stands at the midpoint of BC and rolls a ball toward AB. Suppose that the ball bounces off AB, then AC, then returns exactly to Chong. Find the length of the path of the ball.
The lines $y = x$, $y = 2x$, and $y = 3x$ are the three medians of a triangle with perimeter 1. Find the length of the longest side of the triangle.

Define the sequence of positive integers \(\{a_n\} \) as follows. Let $a_1 = 1, a_2 = 3$, and for each $n > 2$, let a_n be the result of expressing a_{n-1} in base $n-1$, then reading the resulting numeral in base n, then adding 2 (in base n). For example, $a_2 = 3_{10} = 11_2$, so $a_3 = 11_3 + 2_3 = 6_{10}$. Express a_{2013} in base ten.

An isosceles trapezoid $ABCD$ with bases AB and CD has $AB = 13$, $CD = 17$, and height 3. Let E be the intersection of AC and BD. Circles Ω and ω are circumscribed about triangles ABE and CDE. Compute the sum of the radii of Ω and ω.

The polynomial $f(x) = x^3 - 3x^2 - 4x + 4$ has three real roots r_1, r_2, and r_3. Let $g(x) = x^3 + ax^2 + bx + c$ be the polynomial which has roots s_1, s_2, and s_3, where $s_1 = r_1 + r_2z + r_3z^2$, $s_2 = r_1z + r_2z^2 + r_3$, $s_3 = r_1z^2 + r_2 + r_3z$, and $z = \frac{-1 + i\sqrt{3}}{2}$. Find the real part of the sum of the coefficients of $g(x)$.

Find the number of positive integers $j \leq 3^{2013}$ such that

$$j = \sum_{k=0}^{m} \left((-1)^k \cdot 3^{a_k} \right)$$

for some strictly increasing sequence of nonnegative integers $\{a_k\}$. For example, we may write $3 = 3^1$ and $55 = 3^0 - 3^3 + 3^4$, but 4 cannot be written in this form.

Sherry and Val are playing a game. Sherry has a deck containing 2011 red cards and 2012 black cards, shuffled randomly. Sherry flips these cards one at a time, and before she flips each card over, Val guesses whether it is red or black. If Val guesses correctly, she wins 1 dollar; otherwise, she loses 1 dollar. In addition, Val must guess red exactly 2011 times. If Val plays optimally, what is her expected profit from this game?

Let $ABCD$ be a parallelogram with $AB = 8$, $AD = 11$, and $\angle BAD = 60^\circ$. Let X be on segment CD with $CX/XD = 1/3$ and Y be on segment AD with $AY/YD = 1/2$. Let Z be on segment AB such that AX, BY, and DZ are concurrent. Determine the area of triangle XYZ.

Given a point p and a line segment l, let $d(p,l)$ be the distance between them. Let $A, B, and C$ be points in the plane such that $AB = 6$, $BC = 8$, $AC = 10$. What is the area of the region in the (x,y)-plane formed by the ordered pairs (x,y) such that there exists a point P inside triangle ABC with $d(P,AB) + x = d(P,BC) + y = d(P,AC)$?
25. [17] The sequence \((z_n)\) of complex numbers satisfies the following properties:
 - \(z_1\) and \(z_2\) are not real.
 - \(z_{n+2} = z_{n+1}^2 z_n\) for all integers \(n \geq 1\).
 - \(\frac{z_{n+3}}{z_n^2}\) is real for all integers \(n \geq 1\).
 - \(\left|\frac{z_3}{z_4}\right| = \left|\frac{z_4}{z_5}\right| = 2\).

 Find the product of all possible values of \(z_1\).

26. [17] Triangle \(ABC\) has perimeter 1. Its three altitudes form the side lengths of a triangle. Find the set of all possible values of \(\min(AB, BC, CA)\).

27. [17] Let \(W\) be the hypercube \(\{(x_1, x_2, x_3, x_4) \mid 0 \leq x_1, x_2, x_3, x_4 \leq 1\}\). The intersection of \(W\) and a hyperplane parallel to \(x_1 + x_2 + x_3 + x_4 = 0\) is a non-degenerate 3-dimensional polyhedron. What is the maximum number of faces of this polyhedron?

28. [17] Let \(z_0 + z_1 + z_2 + \cdots\) be an infinite complex geometric series such that \(z_0 = 1\) and \(z_{2013} = \frac{1}{2013^{2013}}\).

 Find the sum of all possible sums of this series.
29. [20] Let \(A_1, A_2, \ldots, A_m \) be finite sets of size 2012 and let \(B_1, B_2, \ldots, B_m \) be finite sets of size 2013 such that \(A_i \cap B_j = \emptyset \) if and only if \(i = j \). Find the maximum value of \(m \).

30. [20] How many positive integers \(k \) are there such that
\[
\frac{k}{2013}(a+b) = \text{lcm}(a,b)
\]
has a solution in positive integers \((a, b)\)?

31. [20] Let \(ABCD \) be a quadrilateral inscribed in a unit circle with center \(O \). Suppose that \(\angle AOB = \angle COD = 135^\circ \), \(BC = 1 \). Let \(B' \) and \(C' \) be the reflections of \(A \) across \(BO \) and \(CO \) respectively. Let \(H_1 \) and \(H_2 \) be the orthocenters of \(AB'C' \) and \(BCD \), respectively. If \(M \) is the midpoint of \(OH_1 \), and \(O' \) is the reflection of \(O \) about the midpoint of \(MH_2 \), compute \(OO' \).

32. [20] For an even positive integer \(n \) Kevin has a tape of length \(4n \) with marks at \(-2n, -2n+1, \ldots, 2n-1, 2n\). He then randomly picks \(n \) points in the set \(-n, -n+1, -n+2, \ldots, n-1, n\), and places a stone on each of these points. We call a stone ‘stuck’ if it is on \(2n \) or \(-2n \), or either all the points to the right, or all the points to the left, all contain stones. Then, every minute, Kevin shifts the unstuck stones in the following manner:

- He picks an unstuck stone uniformly at random and then flips a fair coin.
- If the coin came up heads, he then moves that stone and every stone in the largest contiguous set containing that stone one point to the left. If the coin came up tails, he moves every stone in that set one point right instead.
- He repeats until all the stones are stuck.

Let \(p_k \) be the probability that at the end of the process there are exactly \(k \) stones in the right half. Evaluate
\[
\frac{p_{n-1} - p_{n-2} + p_{n-3} - \cdots + p_3 - p_2 + p_1}{p_{n-1} + p_{n-2} + p_{n-3} + \cdots + p_3 + p_2 + p_1}
\]
in terms of \(n \).
33. [25] Compute the value of $1^{25} + 2^{24} + 3^{23} + \ldots + 24^2 + 25^1$. If your answer is A and the correct answer is C, then your score on this problem will be $\left\lfloor 25 \min \left((\frac{A}{C})^2, (\frac{C}{A})^2 \right) \right\rfloor$.

34. [25] For how many unordered sets $\{a, b, c, d\}$ of positive integers, none of which exceed 168, do there exist integers w, x, y, z such that $(-1)^w a + (-1)^x b + (-1)^y c + (-1)^z d = 168$? If your answer is A and the correct answer is C, then your score on this problem will be $\left\lfloor 25e^{-\frac{A}{C}} \right\rfloor$.

35. [25] Let P be the number to partition 2013 into an ordered tuple of prime numbers? What is $\log_2(P)$? If your answer is A and the correct answer is C, then your score on this problem will be $\left\lfloor \frac{125}{2} \left(\min \left(\frac{C}{A}, \frac{A}{C} \right) - \frac{3}{5} \right) \right\rfloor$ or zero, whichever is larger.

36. [24] (Mathematicians A to Z) Below are the names of 26 mathematicians, one for each letter of the alphabet. Your answer to this question should be a subset of $\{A, B, \ldots, Z\}$, where each letter represents the corresponding mathematician. If two mathematicians in your subset have birthdates that are within 20 years of each other, then your score is 0. Otherwise, your score is $\max(3(k - 3), 0)$ where k is the number of elements in your subset.

Niels Abel
Étienne Bézout
Augustin-Louis Cauchy
René Descartes
Leonard Euler
Pierre Fatou
Alexander Grothendieck
David Hilbert
Kenkichi Iwasawa
Carl Jacobi
Andrey Kolmogorov
Joseph-Louis Lagrange
John Milnor
Isaac Newton
Nicole Oresme
Blaise Pascal
Daniel Quillen
Bernhard Riemann
Jean-Pierre Serre
Alan Turing
Stanislaw Ulam
John Venn
Andrew Wiles
Leonardo Zermelo
Shing-Tung You

..............................