1. [20] Consider a regular n-gon with $n > 3$, and call a line acceptable if it passes through the interior of this n-gon. Draw m different acceptable lines, so that the n-gon is divided into several smaller polygons.

(a) Prove that there exists an m, depending only on n, such that any collection of m acceptable lines results in one of the smaller polygons having 3 or 4 sides.

(b) Find the smallest possible m which guarantees that at least one of the smaller polygons will have 3 or 4 sides.

2. [25] 2014 triangles have non-overlapping interiors contained in a circle of radius 1. What is the largest possible value of the sum of their areas?

3. [30] Fix positive integers m and n. Suppose that a_1, a_2, \ldots, a_m are reals, and that pairwise distinct vectors $v_1, \ldots, v_m \in \mathbb{R}^n$ satisfy

$$\sum_{j \neq i} a_j \frac{v_j - v_i}{\|v_j - v_i\|^3} = 0$$

for $i = 1, 2, \ldots, m$.

Prove that

$$\sum_{1 \leq i < j \leq m} \frac{a_i a_j}{\|v_j - v_i\|^2} = 0.$$

4. [35] Let ω be a root of unity and f be a polynomial with integer coefficients. Show that if $|f(\omega)| = 1$, then $f(\omega)$ is also a root of unity.

5. [40] Let n be a positive integer, and let A and B be $n \times n$ matrices with complex entries such that $A^2 = B^2$. Show that there exists an $n \times n$ invertible matrix S with complex entries that satisfies $S(AB - BA) = (BA - AB)S$.