1. Assume we have 4 colors - 1, 2, 3, and 4. Fix the bottom as color 1. On the remaining
sides you can have colors 2, 3, 4 (in that order), or 2, 4, 3, which are not rotationally
identical. So, there are 2 ways to color it.

2. Since \(\cos \frac{2\pi}{3} = -\frac{1}{2} \) and \(\sin \frac{2\pi}{3} = \frac{\sqrt{3}}{2} \), we can write the first term as \((\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3})^6 \).
 Since \(\cos \frac{4\pi}{3} = -\frac{1}{2} \) and \(\sin \frac{4\pi}{3} = -\frac{\sqrt{3}}{2} \), we can write the second term as \((\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3})^6 \).
 Now, we apply DeMoivre’s Theorem to simplify the first expression to \((\cos 6 \cdot \frac{2\pi}{3} + \sin 6 \cdot \frac{2\pi}{3}) = (\cos 4\pi + \sin 4\pi) = 1 \). Similarly, we simplify the second expression to \((\cos 6 \cdot \frac{4\pi}{3} + \sin 6 \cdot \frac{4\pi}{3}) = (\cos 8\pi + \sin 8\pi) = 1 \). Thus, the total sum is \(1 + 1 = 2 \).

3. We know that \(\frac{1}{n^2+2n} = \frac{1}{n(n+2)} = \frac{\frac{1}{n} - \frac{1}{n+2}}{2} \). So, if we sum this from 1 to \(\infty \), all terms except for \(\frac{1}{2} + \frac{1}{2} \) will cancel out (a "telescoping" series). Therefore, the sum will be \(\frac{3}{4} \).

4. The possibilities for the numbers are:
 - all five are divisible by 3
 - three are divisible by 3, one is \(\equiv 1 \pmod{3} \) and one is \(\equiv 2 \pmod{3} \)
 - two are divisible by 3, and the other three are either \(\equiv 1 \pmod{3} \) or \(\equiv 2 \pmod{3} \)
 - one is divisible by 3, two are \(\equiv 1 \pmod{3} \) and two are \(\equiv 2 \pmod{3} \)
 - four are \(\equiv 1 \pmod{3} \) and one is \(\equiv 2 \pmod{3} \)
 - four are \(\equiv 2 \pmod{3} \) and one is \(\equiv 1 \pmod{3} \)

 This gives us 1001 possible combinations out of \(\binom{15}{5} \) or 3003. So, the probability is \(\frac{1001}{3003} = \frac{1}{3} \).

5. **153,370,371,407**

6. There are 6 people that could get their hat back, so we must multiply 6 by the number of ways that the other 5 people can arrange their hats such that no one gets his/her hat back. So, the number of ways this will happen is \((6 \cdot \text{derangement of 5}) \), or \(6 \cdot 44 = 264 \). Since there are \(6! = 720 \) possible arrangements of hats, the probability of exactly one person getting their hat back is \(\frac{264}{720} = \frac{11}{30} \).

7. We can view these conditions as a geometry diagram as seen below. So, we know that
 \(\frac{e}{f} = \frac{3}{7} \) (since \(e = a - b = \frac{3}{7}c - \frac{3}{7}d = \frac{3}{7}f \) and we know that \(\sqrt{e^2 + f^2} = 15 \) (since this is
 \(\sqrt{a^2 + c^2 - \sqrt{b^2 + d^2}} \)). Also, note that \(ac + bd - ad - bc = (a - b)(c - d) = ef \). So, solving
 for \(e \) and \(f \), we find that \(e^2 + f^2 = 225 \), so \(16e^2 + 16f^2 = 3600 \), so \((4e)^2 + (4f)^2 = 3600 \),
 so \((3f)^2 + (4f)^2 = 3600 \), so \(f^2(3^2 + 4^2) = 3600 \), so \(25f^2 = 3600 \), so \(f^2 = 144 \) and \(f = 12 \).
 Thus, \(e = \frac{3}{7} \cdot 12 = 9 \). Therefore, \(ef = 9 \cdot 12 = 108 \).
8. It suffices to consider the complements of the graphs, so we are looking for graphs with 9 vertices, where each vertex is connected to 2 others. There are 4 different graphs - see below.

9. The probability of the Reals hitting 0 singles is \(\left(\frac{4}{9} \right)^3 \). The probability of the Reals hitting exactly 1 single is \(\binom{3}{2} \cdot \left(\frac{2}{9} \right)^3 \cdot \frac{1}{3} \), since there are 3 spots to put the two outs (the last spot must be an out, since the inning has to end on an out). The probability of the Reals hitting exactly 2 singles is \(\binom{2}{2} \cdot \left(\frac{2}{3} \right)^3 \cdot \left(\frac{1}{3} \right)^3 \). If any of these happen, the Alphas win right away. Adding these gives us a \(\frac{666}{729} \) chance of this happening. If exactly 4 singles occur (with probability \(\binom{6}{2} \cdot \left(\frac{2}{9} \right)^3 \cdot \left(\frac{1}{3} \right)^4 \)), then there is a \(\frac{2}{9} \) chance that the Alphas win. The probability of this happening is \(\frac{2}{9} \cdot \frac{10}{729} \). Thus, the total probability of the Alphas winning is the sum of these two probabilities, or \(\frac{666}{729} + \frac{10}{729} = \frac{234}{243} \).

10. A will say yes when B says no to \(n - 1 \) or \(n \), as A will then know B’s number is one greater than A’s number. Thus, A responds first, after \(\frac{n-1}{2} \) ”no” responses if \(n \) is odd, after \(\frac{n}{2} \) ”no” responses if \(n \) is even.